Approved by:

Checked by:

Issued by:

SPECIFICATION

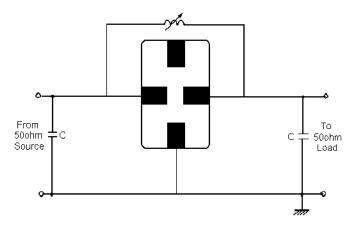
MODEL: HDR916.8MS20

MARKING: HD2903

WUXI HAODA ELECTRONICS COMPANY LIMITED

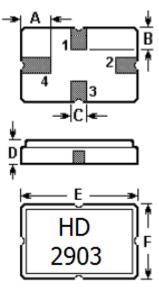
1. SCOPE

This specification shall cover the characteristics of 1-port SAW resonator with 916.8M used for remote-control security.


2. ELECTRICAL SPECIFICATION

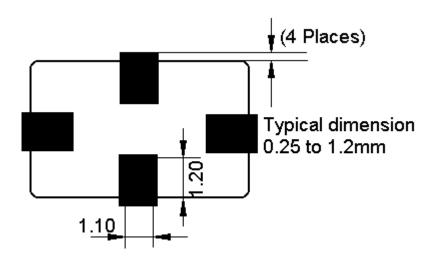
DC Voltage VDC	10V				
AC Voltage Vpp	10V50Hz/60Hz				
Operation temperature	-20°C to +85°C				
Storage temperature	-45°C to +85°C				
RF Power Dissipation	0dBm				

Electronic Characteristics


Item		Unites	Minimum	Typical	Maximum	
Center Freq	uency	MHz	916.550	916.800	917.050	
Insertion Lo	DSS	dB		1.5	2.5	
Quality Factor	Unload Q			24000		
50 Ω			4,000			
Temperature	Turnover Temperature	°C	10	25	40	
Stability	Stability Turnover Frequency			fo		
	Freq.temp.Coefficient	ppm/°C2		0.032		
Frequency Agi	ng	ppm/yr		$<\pm10$		
DC. Insulation	Resistance	$\mathbf{M} \ \Omega$	1.0			
	Motional Resistance R1	Ω		19	26	
RF Equivalent	Motional Inductance L1	μH		87		
RLC Model	Motional Capacitance C1	pF		0.38		
Pin 1 to Pin 2	Staic Capacitance	pF		3.1		
Transducer Sta	atic Capacitance	nH		10.83		

3. TEST CIRCUIT

4. **DIMENSION**


4-1 Typical dimension(unit: mm)

Sign	Data (unit: mm)	Sign	Data (unit: mm)
А	1.2±0.1	D	1.4±0.1
В	0.8±0.1	E	5.0±0.1
С	0.5	F	3.5±0.1

Pin	Configuration
1	Input / Output
3	Output / Input
2/4	Case Ground

4-2 Typical circuit board land patter

5. ENVIRONMENTAL CHARACTERISTICS

5-1 Temperature cycling

Subject the device to a low temperature of -40° C for 30 minutes. Following by a high temperature of $+25^{\circ}$ C for 5 Minutes and a higher temperature of $+85^{\circ}$ C for 30 Minutes. Then release the device into the room conditions for 1 to 2 hours prior to the measurement. It shall meet the specifications in table 1.

5-2 Resistance to solder heat

Submerge the device terminals into the solder bath at 240° C $\pm 5^{\circ}$ C for 10 ± 1 sec. Then release the device into the room conditions for 4 hours. It shall meet the specifications in table 1.

5-3 Solderability

Submerge the device terminals into the solder bath at 245° $\pm 5^{\circ}$ for 5s, More than 95% area of the soldering pad must be covered with new solder. It shall meet the specifications in table 1.

5-4 Mechanical shock

Drop the device randomly onto the concrete floor from the height of 1 m 3 times. the filter shall fulfill the specifications in table 1.

5-5 Vibration

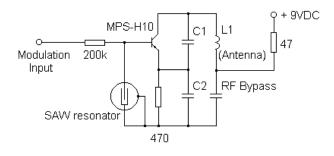
Subject the device to the vibration for 2 hour each in x,y and z axes with the amplitude of 1.5 mm at 10 to 55 hz. The filter shall fulfill the specifications in table 1.

6. REMARK

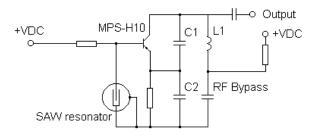
6.1 Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

6.2 Ultrasonic cleaning


Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning

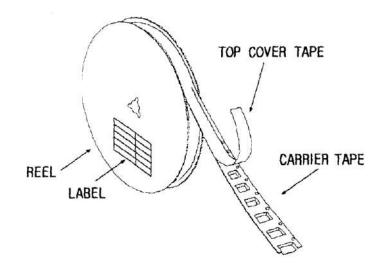
6.3 Soldering


Only leads of component may be soldered. Please avoid soldering another part of component.

7.Typical Application Circuit

Typical low-power Transmitter Application

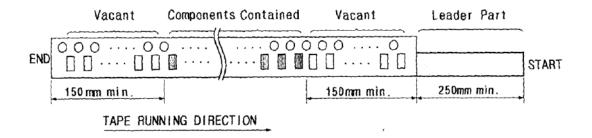
Typical Local Oscillator Application


8. Packing

- 8.1 Dimensions
 - (1) Carrier Tape: Figure 1
 - (2) Reel: Figure 2
 - (3) The product shall be packed properly not to be damaged during transportation and storage.

8.2 Reeling Quantity 3500 pcs/reel

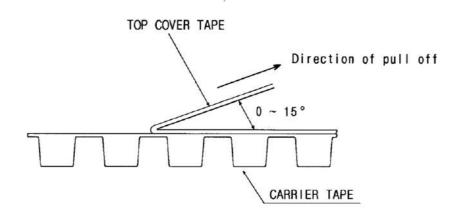
8.3 Taping Structure


(1) The tape shall be wound around the reel in the direction shown below.

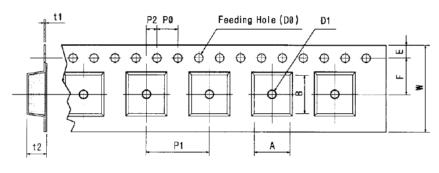
(2) Label

Device Name	
User Product Name	
Quantity	
Lot No.	

(3) Leader part and vacant position specifications.

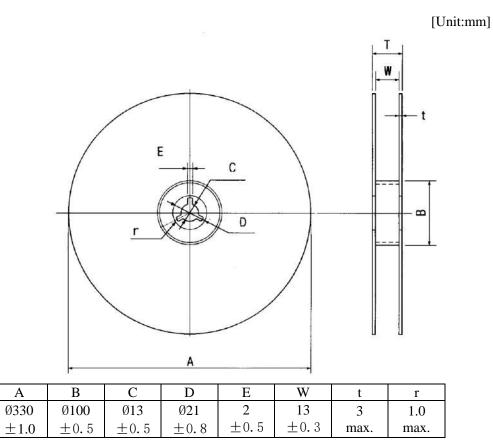


9. TAPE SPECIFICATIONS


9.1 Tensile Strength of Carrier Tape: 4.4N/mm width

9.2 Top Cover Tape Adhesion (See the below figure)

(1) pull off angle: 0~15°
(2) speed: 300mm/min.
(3) force: 20~70g


[Figure 1] Carrier Tape Dimensions

Tape Running Direction

					[Unit:mm]						
W	F	Е	P0	P1	P2	D0	D1	t1	t2	Α	В
12.0	5.5	1.75	4.0	8.0	2.0	Ø1.5	Ø1.0	0.3	2.10	6.40	5.20
± 0.3	± 0.05	± 0.1	± 0.1	± 0.1	± 0.05	± 0.1	± 0.25	± 0.05	± 0.1	± 0.1	± 0.1

[Figure 2]

